257 research outputs found

    Differential Bias:On the Perceptibility of Stance Imbalance in Argumentation

    Get PDF
    Most research on natural language processing treats bias as an absolute concept: Based on a (probably complex) algorithmic analysis, a sentence, an article, or a text is classified as biased or not. Given the fact that for humans the question of whether a text is biased can be difficult to answer or is answered contradictory, we ask whether an "absolute bias classification" is a promising goal at all. We see the problem not in the complexity of interpreting language phenomena but in the diversity of sociocultural backgrounds of the readers, which cannot be handled uniformly: To decide whether a text has crossed the proverbial line between non-biased and biased is subjective. By asking "Is text X more [less, equally] biased than text Y?" we propose to analyze a simpler problem, which, by its construction, is rather independent of standpoints, views, or sociocultural aspects. In such a model, bias becomes a preference relation that induces a partial ordering from least biased to most biased texts without requiring a decision on where to draw the line. A prerequisite for this kind of bias model is the ability of humans to perceive relative bias differences in the first place. In our research, we selected a specific type of bias in argumentation, the stance bias, and designed a crowdsourcing study showing that differences in stance bias are perceptible when (light) support is provided through training or visual aid

    Differential Bias:On the Perceptibility of Stance Imbalance in Argumentation

    Get PDF
    Most research on natural language processing treats bias as an absolute concept: Based on a (probably complex) algorithmic analysis, a sentence, an article, or a text is classified as biased or not. Given the fact that for humans the question of whether a text is biased can be difficult to answer or is answered contradictory, we ask whether an "absolute bias classification" is a promising goal at all. We see the problem not in the complexity of interpreting language phenomena but in the diversity of sociocultural backgrounds of the readers, which cannot be handled uniformly: To decide whether a text has crossed the proverbial line between non-biased and biased is subjective. By asking "Is text X more [less, equally] biased than text Y?" we propose to analyze a simpler problem, which, by its construction, is rather independent of standpoints, views, or sociocultural aspects. In such a model, bias becomes a preference relation that induces a partial ordering from least biased to most biased texts without requiring a decision on where to draw the line. A prerequisite for this kind of bias model is the ability of humans to perceive relative bias differences in the first place. In our research, we selected a specific type of bias in argumentation, the stance bias, and designed a crowdsourcing study showing that differences in stance bias are perceptible when (light) support is provided through training or visual aid

    Citance-Contextualized Summarization of Scientific Papers

    Full text link
    Current approaches to automatic summarization of scientific papers generate informative summaries in the form of abstracts. However, abstracts are not intended to show the relationship between a paper and the references cited in it. We propose a new contextualized summarization approach that can generate an informative summary conditioned on a given sentence containing the citation of a reference (a so-called "citance"). This summary outlines the content of the cited paper relevant to the citation location. Thus, our approach extracts and models the citances of a paper, retrieves relevant passages from cited papers, and generates abstractive summaries tailored to each citance. We evaluate our approach using Webis-Context-SciSumm-2023\textbf{Webis-Context-SciSumm-2023}, a new dataset containing 540K~computer science papers and 4.6M~citances therein.Comment: Accepted at EMNLP 2023 Finding

    Approach to attributed feature modeling for requirements elicitation in Scrum agile development

    Get PDF
    Requirements elicitation is a core activity of requirements engineering for the product to be developed. The knowledge that has been gained during requirements engineering about the product to be developed forms the basis for requirement elicitation. The agile approach is becoming known day by day as the most widely used innovative process in the domain of requirements engineering. Requirements elicitation in agile development faces several challenges. Requirements must be gathered sufficiently to reflect stakeholders' needs. Furthermore, because of the development process, requirements evolve, and they must be adequately treated to keep up with the changing demands of the market and the passage of time. Another challenge with agile implementation is handling non-functional requirements in software development. Addressing non- functional requirements is still a critical factor in the success of any product. Requirements prioritization is also one of the most challenging tasks, and it is uncommon for requirement engineers to be able to specify and document all the requirements at once. This paper presents an approach for requirements elicitation in scrum-based agile development. The approach operates with the feature modeling technique, which is originally used in the Software Product Line (SPL). One of the most important proposed extensions to Feature Models (FMs) is the introduction of feature attributes. Our method uses attributed FMs to consider both functional and non-functional requirements as well as requirement prioritization. For the evaluation purposes, we have demonstrated our approach through two case studies in different domains of software product development. The first case study is in the domain of education, and the second one is in the domain of health care. The results reveal that our approach fits the requirements elicitation process in scrum agile development.Bourns College of Engineering, University of California, Riverside(undefined

    Analyzing the Persuasive Effect of Style in News Editorial Argumentation

    Get PDF
    News editorials argue about political issues in order to challenge or reinforce the stance of readers with different ideologies. Previous research has investigated such persuasive effects for argumentative content. In contrast, this paper studies how important the style of news editorials is to achieve persuasion. To this end, we first compare content- and style-oriented classifiers on editorials from the liberal NYTimes with ideology-specific effect annotations. We find that conservative readers are resistant to NYTimes style, but on liberals, style even has more impact than content. Focusing on liberals, we then cluster the leads, bodies, and endings of editorials, in order to learn about writing style patterns of effective argumentation

    Electron beam crosslinked natural rubber/multiwalled carbon nanotube nanocomposite

    Get PDF
    The physical properties of the rubber blends are influenced by vulcanization and filler distribution. Normally, rubbers are vulcanized by systems based on sulfur or peroxide with the most common filler carbon black. Radiation can also produce crosslink densities like those obtained by sulphur curing, but the net effects, are similar, though not identical. The type of crosslink formed in this method (–C–C–) give rise to better mechanical properties at higher temperature. This work reports on the investigations carried out on natural rubber (SMR) filled with the multiwall carbon nanotubes (MWCNTs). This system of SMR/MWCNTs was subjected to different radiation dosages and compared with nonradiated samples in order to determine the improvement in mechanical properties of the rubber system in the presence of MWCNTs and irradiation dosages. The amount of MWCNTs in this study was varied from 1 to 7 Phr and the irradiation doses were varied from 50 to 200 KGy. Mechanical properties, especially, tensile strength (TS), elongation at break had been studied as a function of irradiation dose and degree of loading with MWCNTs. Gel fraction indicated an increase in the degree of crosslink with the increase in the MWCT and radiation dosage. XRD was carried out to check the increase in the crytallinty of the nanocomposite system. The overall results obtained indicate significant improvement in the mechanical and thermal properties by radiation crosslinking in presence of MWCNTs. These results were further supported by TEM micrograph and nanoindentation
    corecore